Comparison of intelligent systems in detecting a child's mathematical gift
نویسندگان
چکیده
This paper compares the efficiency of two intelligent methods: expert systems and neural networks, in detecting children’s mathematical gift at the fourth grade of elementary school. The input space for the expert system and the neural network model consisted of 60 variables describing five basic components of a child’s mathematical gift identified in previous research. The expert system estimated a child’s gift based on heuristically defined logic rules, while the scientifically confirmed psychological evaluation of gift based on Raven’s standard progressive matrices was used at the output of neural network models. Three neural network algorithms were tested on a Croatian dataset. The results show that both the expert system and the neural network recognize more pupils as mathematically gifted than teachers do. The expert system produces the highest average hit rate, although the highest accuracy in classifying gifted children is obtained by the radial basis neural network algorithm, which also yields lower type II error. Due to the ability of expert systems to explain the result, it can be suggested that both the expert system and the neural network model have potential to serve as effective intelligent decision support tools in detecting mathematical gift in early stage, therefore enabling its further development. 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Recognizing Mathematically Gifted Children by Using Expert Systems', Teachers', and Psychologists' Estimations
A scientifically approved psychological finding of gift is usually not available to all schools. In order to obtain an accurate and early detection of mathematically gifted children, an intelligent expert system MathGift is proposed to assist teachers in making decision about a child's gift in mathematics in the fourth grade of elementary school. Besides mathematical competencies, the system in...
متن کاملMULTICRITERION SYNTHESIS OF INTELLIGENT CONTROL SYSTEMS OF GENERATING UNIT OF NUCLEAR POWER STATION
The paper is devoted to solution of some problems in nuclear power station generating unit intellectual control systems using genetic algorithms on the basis of control system model development, optimizations methods of their direct quality indices and improved integral quadratic estimates. Some mathematical vector models were obtained for control system multicriterion quality indices with due ...
متن کاملMathematical Modeling for a Flexible Manufacturing Scheduling Problem in an Intelligent Transportation System
This paper presents a new mathematical model for a production system through a scheduling problem considering a material handling system as an intelligent transportation system by automated guided vehicles (AGVs). The traditional systems cannot respond to the changes and customer’s demands and for this reason, a flexible production system is used. Therefore, for this purpose, automated transpor...
متن کاملAn Intelligent Protection Method for Multi-terminal DC Microgrids Using On-line Phaselet, Mathematical Morphology, and Fuzzy Inference Systems
In this paper, a new method for fault detection, location, and classification in multi-terminal DC microgrid (MTDC) is proposed. MTDC grids have expanded due to some issues such as the expansion of DC resources, loads, and aims to increase power quality. Diagnosing the types and location of faults is important to continue the service and prevent further outages. In this method, a circuit kit is...
متن کاملDetection and Recognition of Multi-language Traffic Sign Context by Intelligent Driver Assistance Systems
Design of a new intelligent driver assistance system based on traffic sign detection with Persian context is concerned in this paper. The primary aim of this system is to increase the precision of drivers in choosing their path with regard to traffic signs. To achieve this goal, a new framework that implements fuzzy logic was used to detect traffic signs in videos captured along a highway f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Education
دوره 53 شماره
صفحات -
تاریخ انتشار 2009